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Abstract

The motions of many physical particles as well as living creatures are mediated by random influences or
‘noise’. One might expect that over evolutionary time scales internal random processes found in living sys-
tems display characteristics that maximize fitness. Here we focus on animal random search strategies [G.M.
Viswanathan, S.V. Buldyrev, S. Havlin, M.G.E. Da Luz, E.P. Raposo, H.E. Stanley, Optimizing the suc-
cess of random searches, Nature 401 (1999) 911-914; F. Bartumeus, J. Catalan, U.L. Fulco, M.L. Lyra,
G.M. Viswanathan, Optimizing the encounter rate in biological interactions: Lévy versus Brownian strat-
agies, Phys. Rev. Lett. 88 (2002) 097901 and 89 (2002) 109902], and we describe experiments with the
following Daphnia species: D. magna, D. galeata, D. lumholtzi, D. pulicaria, and D. pulex. We observe that
the animals, while foraging for food, choose turning angles from distributions that can be described by
exponential functions with a range of widths. This observation leads us to speculate and test the notion that
this characteristic distribution of turning angles evolved in order to enhance survival. In the case of theo-
retical agents, some form of randomness is often introduced into search algorithms, especially when infor-
mation regarding the sought object(s) is incomplete or even misleading. In the case of living animals, many
studies have focused on search strategies that involve randomness [H.C. Berg, Random Walks in Biology,
Princeton University, Princeton, New Jersey, 1993; A. Okubo, S.A. Levin (Eds.), Diffusion and Ecological
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Problems: Modern Perspectives, second ed., Springer, New York, 2001]. A simple theory based on stochas-
tic differential equations of the motion backed up by a simulation shows that the collection of material
(information, energy, food, supplies, etc.) by an agent executing Brownian-type hopping motions is opti-
mized while foraging for a finite time in a supply patch of limited spatial size if the agent chooses turning
angles taken from an exponential distribution with a specific stochastic intensity or ‘noise width’. Search
strategies that lead to optimization is a topic of high current interest across many disciplines [D. Wolpert,
W. MacReady, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computa-
tion 1 (1997) 67].

© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The spatial diffusion of aggregations of various animals has received a great deal of interest for
many years [1-3]. Observations of living organisms in the process spreading from a point of aggre-
gation or artificial release have led to the development of physical diffusion theories applied to
these and similar processes [3,4,6—-10]. All animal motions involve randomness, or noise, to some
degree [9,11]. This has led to two general theoretical approaches for modeling animal motions:
methods based on random walk theory, of which there are many, but we cite here only one [3],
and those based on continuous stochastic differential equations [10,12,13]. An essential activity
for any animal, and the process that we focus on here, is foraging for food [14-22], specifically,
foraging in food patches of finite size [23-28]. We consider foraging in a food patch of determined
size, over which there is a uniform food distribution. Additionally, we add the constraint that for-
aging can continue only for a finite time.

Optimization problems [5] have attracted the attention of a number of groups [1,22,30,31]. The
optimum foraging strategy depends strongly on the density of food particles, or prey, in the patch
in comparison with the typical length of a characteristic movement of the animal. If food density
is small, it has been shown that a search strategy based on Lévy rather than Brownian statistics is
optimal [1,2]. Other approaches have included fractal analyses of swimming motions [18,32-34].
In the below described experiment, theory and simulations, the food density was high, and we
therefore confine our analyses to consideration of Brownian-type statistics.

We concentrate on the motions of single individuals while feeding. Daphnia are not social ani-
mals. Solitary individuals are observed to swim alone with no apparent distress. In order to define
the simplest possible yet feasible problem, we study the swimming characteristics that arise only
from the stimuli offered by the presence of uniformly distributed food. It is important, therefore,
to eliminate insofar as possible all other stimuli, for example those arising from light, from neigh-
boring individuals or from the walls or bottom of the aquarium. The experiments described below
were carried out in the absence of visible light. A solution containing a uniform distribution of
food was used in order to eliminate stimuli that would arise from patchiness or non-uniform dis-
tributions. In order to minimize animal-animal interactions, the density was kept low enough that
approximately 1 cm separated nearest neighbors. Individuals swimming near the walls or bottom
of the container were not considered. The theory described below was developed to describe this
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type of motion, thus no interaction terms appear in it. These considerations stand in contrast to
the many works that describe swarming and pattern formation in colonies of various types of ani-
mals wherein the interactions among individuals is crucially important, see for example Refs.
[4,15,23].

The motion we consider in two dimensions is a sequence of straight line hops, each followed by
a pause, then a change of direction through a turning angle o, followed by another hop, etc. Our
initial application is to the swimming characteristics of various species of the zooplankter, Daph-
nia, while foraging for food. We observe, in both theory and the simulations described below, that
the quantity of food collected is optimized with a statistical parameter associated with the stochas-
tic intensity, or the magnitude of the variability, of the turning angles chosen by the animal as it
moves within the patch. The maximization of a desirable quantity, here the amount of food gath-
ered, at an optimal value of the stochastic, or noise, intensity recalls the process of stochastic res-
onance, which we discuss further in Section 8.

We emphasize the importance of the statistical distribution of the observed turning angles. The
width of this distribution, here called the ‘noise width’, is a measure of the stochastic intensity of
the underlying random process. A number of authors have reported tabulations of or the average
of turning angles during observations or analyses of animal motions [17,18,29,34,35] while others
[1,12,29,44,45] have included the distribution function of this quantity. We discuss these in more
detail in Section 8.

The hop—pause-turn-hop motion reminds one of a physical random walk, and indeed such
ideas have been applied to numerous living creatures ranging in size from bacteria to birds and
large mammals [3,4]. Foraging, of course, is an essential activity for all animals that involves
searching areas that might contain food, eating when it is found and then moving on. The process
is semi-random in that instantaneous and local decisions made by the animal depend to some ex-
tent not only on chance but also on some immediate objective knowledge that hopefully maxi-
mizes success. Thus the foraging animal can be expected to diffuse (in our case over a two
dimensional plane), and its motion can be described as a correlated random walk (CRW). Such
diffusion has been well studied across a wide spectrum of living creatures [3,4,6,9,17,38-42].

But here we focus on optimization of the diffusion process, specifically in order to maximize
success for random encounters with food particles in finite spatiotemporal scales. We ask what
characteristics of the essentially random search process can lead to enhanced foraging success.
We have observed that our foraging Daphnia, of the species studied here, do not mimic purely
Brownian motion, wherein each move has no correlation with any previous move but instead
choose from specific distributions of motional parameters. Previous studies have revealed some
of the characteristics of the combination of random and deterministic motions of plankton
[9,32,46]. Here we consider the rurning angle, o. This leads us to formulate the following hypoth-
esis: The distribution of turning angles in the hop—pause—turn—hop sequence is selected for sur-
vival. Success at foraging for food, as well as other behaviors, that enhance fitness, have been
the subject of many studies, of which we cite only a few [31,47,48]. Support for the hypothesis
would be generated if one could show that the observed turning angle distributions (TADs) lead
to a maximization of food gathering.

As we show below, the observed TADs of our foraging Daphnia are well described by exponen-
tial functions: P(a) = Noexp[—|a|/oo], where Ny is the number of angles observed, |«| is the mag-
nitude of the turning angle, and g is the width of the distribution, here called the ‘noise width’.



168 R. Garcia et al. | Mathematical Biosciences 207 (2007) 165188

We note that such distributions lie between two extremes: In the limit of large o, P(o) — const,
while at the opposite extreme, for oy — 0, P(a) — (o). In the first limit, the animal or agent exe-
cutes purely uncorrelated Brownian motion, while in the latter limit the animal does not turn at all
but follows straight line or ballistic motion as shown in Fig. 1. (Throughout this paper, we use the
word ‘animal’ or ‘Daphnia’ when referring to the experimental observations of the actual Daph-
nids, while ‘agent’ is used in reference to the theoretical or simulated creature. ‘Particle’ refers
to representation of the food particles in the theory or simulation.)

The first order correlation function, @ = [* P(«) cos() do,, is a quantitative measure of the dif-
ferences among distributions such as those indicated in Fig. 1 and as discussed in Sections 5 and 6.
The original theory is based on continuous stochastic differential equations [12], but a CRW ver-
sion which connects to the extensive literature on this topic has also been developed [49].

We discuss some characteristics of Daphnia that are relevant to our study in Section 2. In Sec-
tion 3, we present the methods used for Daphnia culture, in the experiment, for data analysis and
in the simulations. We present the results of the experiment in Section 4 for five species including
two morphological forms of one and for both adults and juveniles of two species. In Section 5, we
summarize and present the results of the theoretical model based on stochastic differential equa-
tions. Section 6 shows two versions of a simulation based on CRWs with the simplest possible
assumptions regarding the collection of material by random walkers who choose turning angles
from correlated TADs. In Section 7, we examine again the hypothesis in the light of the experi-
mental results and make some remarks on the diffusion process. In Section 8, we summarize and
discuss our results in relation to other relevant studies as reported in the literature. Finally, we
associate the maximum in food gathered at an optimal value of the noise width of the TAD, as
predicted both by the theory and by the two simulations, to a new kind of stochastic resonance
arising from randomness in the animal’s own internal systems.
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Fig. 1. Possible turning angle distributions showing the extremes: uncorrelated (top) and delta-function, or no turns
(bottom). The exponential TAD lies in between these extremes. Insets: (top) two hops that define the turning angle, o,
(bottom) hop trajectories showing a non-uniform distribution (the zig-zag trace) and delta-correlated no turns (the dark
straight line).
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2. Some characteristics of Daphnia species

Daphnia normally feed during nighttime darkness on photosynthetic algae which they find near
the water surface and which were produced during the previous day. During the daylight hours
they descend to the bottom of the lake or pond. This behavior is called diel vertical migration
[50,51] and is thought by most biologists to have evolved in order to escape predators [50,52,53]
such as fish that hunt them visually. Three-dimensional tracking of Daphnia indicate that they nor-
mally swim in approximately two-dimensional planes (+2 cm) [33]. Daphnia are attracted to visible
light [54], flee from ultra violet [55] and are widely assumed to be blind to infra red.

3. Methods
3.1. Culture

The animals used in the experiments described here were cultured in five species in two different
labs. D. glaeata, D. lumholtzi (in two morphotypes: with and without helmets or spines), D. puli-
caria, and D. pulex adults were cultured in Milwaukee at the Great Lakes WATER Institute. Typ-
ically 20-30 individuals of each species were kept in 1-1 of well water at approximately 21 °C with
24 h of light. Two 32 W fluorescent lights were located approximately 30 cm distant from the five
cultures. The animals in Milwaukee were fed with a mixture of three live phytoplankton species
(with UTEX culture number): Ankistrodesmus falcatus (UTEX 101), Chlamydomonas reinhardtii
(UTEX 90), Selenastrum capricornutum (UTEX 1648) and maintained in well water under fluores-
cent light at concentrations in the range (7.2-14.2) x 10* cells/ml such as to make the water pale
green. Laboratory air was bubbled through the mixed phytoplankton culture at the rate of about
5 bubbles per second (2 mm bubbles). About 10 ml of this phytoplankton mixture was added to
each Daphnia culture daily. New water was added to the Daphnia cultures daily to make up for
water loss due to evaporation. Excess adult individuals were removed from the culture daily in
order to maintain a population within the 1-1 beakers of approximately 20-30 individuals. The
water was exchanged completely approximately once each month. All equipment, tools and con-
tainers used for culturing both Daphnia and the phytoplankton were autoclaved before use in or-
der to avoid contamination with bacteria.

The D. pulex and D. magna, both adults and juveniles, were cultured in St. Louis at the Center
for Neurodynamics. These two species differ considerably, D. pulex being more gracile, though
their anatomical features are much the same. Typical features of a pair of adult individuals are
shown in Fig. 2.

D. pulex were hatched from their resting eggs (Carolina Biological) in well water in a Petri dish.
Often predators appear as well. In order to obtain a pure Daphnia culture, individuals were ex-
tracted from the dish with a suction pipette and examined in a single drop of water under a micro-
scope. If the individual within the droplet was free of other living organisms (at least those visible
under the microscope), it was added to a culture medium consisting of 1-1 of well water plus a few
milligrams of Daphnia food (Carolina Biological) consisting of a mixture of unknown species of
photosynthetic phytoplankton. The selection process was repeated until 20-30 individuals were in
the culture medium. The culture was maintained perpetually under a fluorescent light (14 W bulb)
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Fig. 2. Examples of adult D. magna and D. pulex.

70 cm above the beaker. The phytoplankton growing within the culture, and upon which the D.
pulex feed, were fed twice weekly with 10 ml of a dilute solution of micro-fine size freeze dried
algae, Spirolina patensis (Algae-Feast, Earthrise Nutritionals). This solution was made by dissolv-
ing approximately 55 mg of Spirolina in 1-1 of well water. About 50% of the culture water was
replaced with clean well water weekly. Under these conditions the D. pulex population increases
rapidly. After a few days the population was moved to a larger 3 liter beaker and the feeding rou-
tine continued. In order to avoid overcrowding it was necessary to remove about half the popu-
lation every 2 weeks.

The D. magna were obtained from a permanent culture maintained by the Biology Department
at University of Missouri at St. Louis. They were maintained in two large (45 and 25 1) aquaria
placed in front of a window and maintained at laboratory room temperature (21-23 °C). The
aquaria received some natural daylight from the window and perpetual fluorescent light from a
14 W bulb placed 70 cm above the aquaria and midway between them. They were fed twice weekly
with about 40 mg (large aquarium) and 20 mg (small aquarium) of the aforementioned freeze
dried Spirolina dissolved in well water. This solution was sufficient to make the aquarium water
noticeably green. About 50% of the aquarium water was replaced with clean well water weekly
(before feeding). About 25% of the D. magna individuals were discarded with the weekly water
change in order to keep the population density of adults in bounds at approximately 500 per liter.
Under these conditions, the population fluctuates on an approximately monthly time scale. The
D. magna usually formed a noticeable swarm shaped approximately like a 14 cm diameter sphere,
under the fluorescent light or near a reflection of it from the bottom wall of the aquarium. During
times of maximum population and good health (as evidenced by the presence of relatively large
numbers of juveniles) we measured the density of individuals within the swarm. This was done
by rapidly extracting about 40 ml with a large suction pipette (actually a turkey baster) from
the center of the swarm. The results were approximately 1 adult and 2.4 juveniles per 2 ml. These
results may, however, be biased on the low side, since Daphnia exhibit an induced escape reflex
when they perceive a water flow such as near the entrance of the pipette. Moreover, the escape
success of juveniles and adults may be different.

Both culture methods, though quite different, work very well and are well known and widely
used by various groups working with Daphnia. The St. Louis method is suitable for producing
large populations, for example, as needed for experiments with swarms. The Milwaukee method
is suitable for culturing small populations of many different species in limited lab space.
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Table 1

Daphnia Species turning angle distribution width, o,

Species: D. Lab oo (rad) oo (deg) TAD
pulex — adult Mil 0.82+0.1 47.0 £5.7 Fig. 7
pulex — adult StL 0.74 £ 0.1 424+ 5.7 Fig. 6
pulex — juvenile StL 0.52 +0.05 29.7+29 Fig. 7
magna — adult StL 1.2+0.1 68.8 +5.7 Fig. 6
magna — juvenile StL 1.0+0.2 57.3+11.5 Fig. 7
galeata Mil Non exponential TAD

lumholtzi — spine Mil 23+04 131.8 +£22.9 Fig. 7
lumholtzi — no spine Mil 1.0+0.1 573457 Fig. 7
pulicaria Mil 0.92 +0.06 52.7+3.4 Fig. 7

The ultimate test of any culture method is the health of the populations. In the case of Daphnia,
good health is assured so long as juveniles are present in significant numbers in the populations. In
both labs, individuals were chosen for the experiments only from the cultures when large numbers
of juveniles were present. However, in order to test the reproducibility of the results, experiments
with D. pulex adults were carried out in both labs. As shown above in Table 1, the results for this
species were reproducible across the two labs within the statistical precision of the measurements.

3.2. Experimental procedure and apparatus

Video records of the swimming motions of D. magna and D. pulex, adults and juveniles, were
made in St. Louis using the apparatus shown in Fig. 3.
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Fig. 3. The apparatus. Cameras view both side and bottom views of swimming Daphnia in a shallow aquarium (~2 cm
water depth) in the infra red. The experiments were performed in nearly complete absence of visible light. The
Milwaukee apparatus differed in that IR illumination was from the bottom through a diffuser instead of the 45° mirror,
and a single camera was located above the aquarium.
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The remaining species were recorded in Milwaukee using a similar apparatus. Typically about
8-12 individuals were placed in a standard feeding solution 1.5-2 cm deep in a shallow square
transparent aquarium, 26 X 26 X 5 cm constructed of Perspex, which is transparent to both visible
and infra red light in the wavelength ranges used. The standard feeding solution for making the
video records differed from the feeding solution used for culturing in two respects: first, the con-
centration of food or prey cells was much smaller than in the culturing medium, and second, the
solution was well mixed, so that the prey distribution was uniform. In Milwaukee, the standard
feeding solution for making video records was 3.0 & 0.6 x 10° cells/ml well water of live C. rein-
hardtii. In St. Louis, the standard feeding solution for video records was 8 & 1.6 x 10° cells/ml
(equivalent to 13.7 mg/l) freeze dried Spirolina. In both cases the cell counts were accomplished
with a bright line counting chamber (Hausser Scientific, Horsham, PA). In both, feeding solutions
used in filming the prey (food) density was intended to be small enough that it would not show up
significantly under the infra red light used for making the video records, but large enough that
many (approximately 100) prey encounters would occur during one hop-pause episode. During
the actual experiment and recording of videos, the density of individual animals was much smaller
than that shown in the example frame Fig. 4. During recording, typically 1-2 cm separated indi-
viduals in order to minimize individual-individual interactions.

The Daphnia (typically 8-12) to be used in the experiments were extracted from the cultures and
placed in the aforementioned square aquarium containing the standard feeding solution for video
recording. Before recording D. pulex and D. magna, both adults and juveniles were maintained in
the dark for 15-30 min. Before recording, all visible light was extinguished, and the infra red (IR)
illuminators (American Dynamics 1020) and the digital cameras were switched on. The recording
cameras were Sony DCR-TRVS80 (St. Louis) and XC-ES50CE (Milwaukee) operating at 30
frames per second. This frame rate established the time base of the recordings. Both cameras
can record in the wavelength range available from the illuminators (>730 nm). The digital video
recordings were 8-12 min long and were captured directly by computer. Fig. 4 shows a single
frame from such a video of D. magna (though for illustrative purposes, the density of animals
is much larger than in the actual experiments).

Fig. 4. An example frame from the video records showing D. magna adults and juveniles. The square is a 1 cm distance
calibrator. In the actual recordings, many fewer individuals were used in order to minimize effects of animal-animal
interactions.
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Three ages of D. magna are shown in Fig. 4. The largest individuals are adults that are repro-
ducing. The intermediate size individuals are no older than about 24 h, and the smallest are about
8-12 h old. For the experiments with juveniles, about 3—5 adults were placed in the standard feed-
ing solution and allowed to remain in the dark for about 12 h. Then the adults were then removed,
the feeding solution renewed, and videos of the juveniles were made again after about 30 min con-
ditioning in the dark.

3.3. Data analysis

The object in the center of Fig. 4 is a 1 cm square calibrator. The coordinates (in pixels) of each
corner of this square were obtained and the scalar distance between adjacent corners calculated
using the Pythagorean Theorem. In this way the conversion factor relating lengths in pixels to
those in cm was obtained. Thus from the sequence of coordinates at the beginnings and ends
of the hop vectors, and using the conversion factor, the hop lengths could be obtained, again using
the Pythagorean Theorem. For statistical accuracy typically 750 or more hops were analyzed usu-
ally from 4 to 6 different animals. Only animals swimming far (>1-2 cm) from the aquarium walls
were analyzed. We also tabulated hop length, hop time, and pause time as will be analyzed and
reported in detail elsewhere.

After the video records were obtained, the movies were reviewed in order to identify the frames
containing the beginning and end of a hop. These frames were exported and a software program,
Track-It (Iguana Gurus, <thegurus@ameritech.net>), was used to locate and record the x—y coor-
dinates (in pixels) of an identifiable point on the animal’s body. The identifiable point was usually
the head midway between antennae. We observed that while feeding under the aforementioned
conditions, the animals rarely tumbled or turned during a single hop. In the few cases where this
did happen (see the individual about 1/3 of the way up on the extreme left of Fig. 4) that hop was
not included in the analysis. In all cases considered the individual was pointed in the vector direc-
tion of the hop both at the beginning and at the end of the hop. Thus we have the coordinates in
pixels at the beginning, x1, y1, and at the end, x,, y,, of each hop in a sequence. These coordinates
define the beginning and end points of the first hop vector as shown in the inset of Fig. 1. The
second hop vector is obtained by repeating this procedure on a second pair of exported frames
that define the beginning and end of the second hop and so on. The tracking program writes
all the coordinates sequentially in tabular form to an Excel file. A simple program then con-
structed beginning-to-end hop vectors and computed the angles between sequential vectors. This
was done by first locating the quadrant where was located the tip of each vector. The angle ¢; with
respect to the positive x-axis was calculated from ¢; = tan™'[(y» — y1)/(x> — x1)], for the ith hop.
The turning angle was obtained from these angles, o; = ¢+ — ¢,. Positive turning angles repre-
sent right turns and negative ones turns to the left. No turning angle greater than 180° was in-
cluded, though such events are so rare that usually not one occurred in a sample of hundreds
of angles. Note that the tip of one vector need not join to the tail of the next one. From the tab-
ulations of the turning angles, frequency histograms were then obtained as shown by the examples
in Fig. 5.

Fig. 5 shows two turning angle frequency histograms, also here called TADs (turning angle dis-
tributions), as obtained using the aforementioned procedure. We note that the TADs are approx-
imately symmetric in positive (right turn) and negative (left turn) angles. The symmetry of these
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Fig. 5. Turning angle frequency histograms for D. magna (left) and D. pulex (right) adults.

TADs indicates that during the experiment there were no significant stimuli that induce motions
in a specific direction as would occur if extraneous significant stimuli were present, for example as
presented by a patchy or non-uniform distribution of prey or by stray visible light. Another exam-
ple of motion wherein asymmetric TADs are observed is the rotational motion [12,13] induced by
the presence of light sources visible to large populations (colonies) of the animals [56,57]. Since
Daphnia respond to visible light, in order to avoid asymmetric TADs, care was taken to perform
the experiments in darkness (ambient visible light intensity smaller than 2.5 nW/cm?).

These data were analyzed by plotting frequency histograms of the magnitudes of the angles on
semi-logarithmic axes. The aforementioned exponential behaviors thus show as straight lines on
such a plot with slopes 1/0o. As examples, including the linear analyses, the data of Fig. 5 are re
plotted on semi-logarithmic scales in Fig. 6. Both distributions can be described by exponential
functions as mentioned previously. This becomes evident once the TADs are plotted as absolute
(unsigned) angles on semi-logarithmic scales as allowed only if the TADs of the signed angles are
symmetric. Examples together with the straight lines representing the fitted exponential functions
are shown in Fig. 6.

25
20 -
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E= 16
£ g
b=4 z
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00 i —— ~
13 kY 54 7 80 108 7% 144 G2 150
Absolute Turning Angles (deg) Absolute Turning Angles (deg)

Fig. 6. The same data as shown in Fig. 5 but the frequencies of the unsigned angles are plotted on semi-logarithmic
scales. The straight lines are fits to the exponential function, P(x) = Ny exp —L‘—“‘O‘ with noise widths o =1.24+0.1
(magna) and 0.74 + 0.1 (pulex—dashed) and 2.18 rad (pulex—solid) obtained by least squares fits to the TADs. The
dashed fit was used in the analysis. These data were obtained in St. Louis.
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Note that in the case of D. pulex there is a departure from exponential behavior at large angles.
Such departures were evident in a very few cases of the other data as well, and may represent a
transition to a non-exponential behavior at large angles. A fit taking this into account is shown
by the solid line in the right panel of Fig. 6. The dashed line in the same panel ignores the large
angle anomaly. In order to avoid subjective judgments that might be prompted by trying to guess
the angle above which the behavior becomes non-exponential, we analyzed all data by linear least
squares fits on the full interval O—m as shown by the dashed line. The statistical precision of the fits
is indicated by the standard errors as shown in the caption of Fig. 6. Data for all five adult species
plus the juveniles of D. magna and D. pulex and the two morphological forms of D. lumholtzi were
analyzed following exactly the same procedure as the examples shown in Fig. 6.

4. Experimental results

An exponential function, with g, as a fitting parameter, was fit to each set of data shown in
Fig. 7 by linear regression, exactly as was done for the St. Louis data shown in Fig. 6. The results
of least square fits to exponential functions for all species both juveniles and adults, and for the
two morphological forms, are shown in Table 1, Section 3.1. We note that the noise widths of the
TADs vary from a minimum of 29.7° (D. pulex juvenile) to a maximum of 131.8° (D. lumholtzi
with spines) with an average for the eight sets of 1.06 rad or 60.7°.

Table 1 tabulates the experimentally determined fitting parameter o, for all species as shown in
the third and fourth columns. The species are identified in the first column. The lab where the spe-
cific experiment was carried out is shown in the second column. The Figure where the TAD is
displayed is tabulated in the fifth column. Animals whose age status is not specified are adults.
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Fig. 7. Histograms of the turning angles for all species except D. magna adult and physical forms plotted on logarithmic
scales. Note that this Figure includes a second set for pulex adults obtained in Milwaukee, which serves as a control of
consistency between the two labs. Exponential functions (not shown) would appear as straight lines which are better
representations of some data than others, for example D. pulicaria.
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Of these, the first two entries in Table 1, the results of experiments with D. pulex adult, were re-
peated in both labs with different animals cultured in the lab specified. The results can be com-
pared: 0.74 £ 0.1 rad (St. Louis) and 0.82 + 0.1 rad (Milwaukee). These differ by 11% which
may be considered an estimate of the minimum overall reproducibility or accuracy of the exper-
iments. However, since this difference falls within the limits of statistical precision of the two re-
sults (0.1 rad), it may be considered a test of the reproducibility of experiments carried out in
Milwaukee versus those carried out in St. Louis.

We obtained data also on the hop lengths, hop times and pause times. We here report only the
means of those three quantities and only for D. magna adult as obtained in St. Louis. In every case
more than 750 hops were analyzed to arrive at the mean and its standard deviation. The mean hop
length is (¢) =1.11 mm 4 0.02 mm. The mean hop time is (#,) =0.15 4 0.033 s, and the mean
pause time is (#,) = 0.25 + 0.033 s. The errors for the two times are actually the limits of precision
of the cameras operating at 30 frames/s.

5. Theory of optimal foraging

We have developed a foraging theory, based on continuous stochastic differential equations of
motion for an individual agent (animal), as described below. The simulations of foraging agents
described in the next section are in qualitative agreement with the theory.

In a previous work [12] a CRW model was applied to find the effective diffusion coefficient of
the random motion with preferred turning angles. Starting with the spatial correlation function of
such a random walker, and using the approach of Kareiva and Shigesada [58-61], we derived the
diffusion coefficient as a function of the angular correlation function. The angular correlation de-
pends on the ensemble of turning angles chosen by the agent while foraging in a food patch.
Knowing the TAD, the diffusion coefficient can easily be calculated. It was shown that with a pre-
ferred turning angle of, say 30°, the agent could cover a larger area in the mean than an agent
executing a pure Brownian (uncorrelated) motion. Here we first summarize the theory presented
in Ref. [12], where a simple approach leads to the diffusion coefficient of a persistent random
walker. After comparison with some of the experimental results presented above, we present a
simple theory of food consumption.

5.1. Effective diffusion of a persistent random walk

To calculate the effective diffusion of a random walker, or agent, Kareiva and Shigesada
[59,61,62] found that it is sufficient to record the angular correlation of the aforementioned walk.
The relative angle between successive hop directions is crucial. Using this idea Komin et al. [49]
calculated the diffusion coefficient of a CRW depending on this correlation. The result is the effec-
tive diffusion constant in a two-dimensional space:

A1+ 0
T4l -
where 4 is the mean hop-length, 7 is the mean hop time of the agent, and Q2 is the angular corre-
lation between two successive hops with turning angle «. As mentioned above,
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Q :/ P(o) cos ador. (2)
From the experiments we observe that the TADs are well described by the exponential function,
P(a) = Cexp <— M) (3a)

0o

When properly normalized, the constant is

e = [ew () an= o eip o) (0

where we note that 24, is the double width of the TAD. Inserting Eq. (3) into Eq. (2), one obtains
the angular correlation,

o ()t

) e (2)

This is a function which decays with the width g, of the exponential distribution.

5.2. Theory of food consumption

Let us now speculate on the advantages of motion for which the diffusive behavior has been
chosen by these animals in between the uncorrelated Brownian and the straight line ballistic flight.
Consider the following model of a foraging agent which we represent as a diffusing entity. A group
of such agents can be described by a continuous density p(7,¢) which obeys a diffusion equation
with the coefficient D, from Eq. (1),

op
— = D,Ap. 5
" p ()
In two-dimensions the resulting probability density is
. 1 7
p(F,1) = AnDt eXp <— 4D,l>' (6)

We assume that a single agent consumes food at a constant rate k, the clearance rate in two-
dimensions, during its random motion, and that the density of food particles is given by c(7,1).
In addition, the food is assumed to be approximately immobile, that is, it diffuses very slowly
in comparison with the agent. The food density is thus given by

%c(?, ) = —ke(7, D)p (7, 1), (7)

which can easily be solved using the known agent density, Eq. (6). Simple quadrature gives

c(7. ) = colF) exp [— / ko1 dt’] , (8)
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so that

k 7
c(F,t) = co(F) exp [_FD,EL (Lm)]a )
where we have set 70=0 and used the definition of the exponential integral [63],
E\(a) = [ exp(—t/t)dt.

Similar to the feeding behavior of Daphnia, the agent must forage in a bounded food patch for a
fixed time. We consider the food patch to be a circle of radius, R, with no food outside the circle.
Inside the circle the food is uniformly distributed, so that ¢(¥,¢) = ¢, for || < R, and vanishing
elsewhere, where the origin is at the center of the circle. Then, after a fixed time 7, we calculate
the food remaining in the patch,

R k 7'2
C(T) = ZTECO/O eXp [—FDrEl (m)]rd}’ (10)

First, let us analyze the parameters upon which C(7) is dependent. The ratio, D = % has the
dimension (length?/time) and thus is a characteristic diffusion constant. Note that the clearance
rate, k, defined by Eq. (7) also has the dimension of a diffusion constant. Thus we can define
two dimensionless parameters, x = k/D and 6 = D, /D, that govern the process. The first, x, is
the dimensionless clearance rate, and the second, d, is the dimensionless diffusion constant.

Changing the variable of integration to & = r*/4D,t, we obtain from Eq. (10), the following
expression for the food remaining in the patch after time 7,

C(T) = C(0)5 / " exp [-5E1(9)] de, (11)

where C(0) = 4nR’c, is the initial amount of food in the patch. The fraction of food remaining
after time 7 is

(T /5 K

% = Cremaining(K7 5) = 5/0 eXp [_SEI (é)} di (12>
In order to obtain quantitative results, this expression can be evaluated numerically with the help
of the expressions, Egs. (5.1.53) and (5.1.54) in Ref. [63]. Instead of the fraction of food remaining
in the patch, we could evaluate the fraction of food gathered by the agent, Cgathered =
1 — Cremaining- The results are shown in Fig. 8 where we plot the fraction of food gathered versus
the dimensionless diffusion constant, o.

Fig. 8 shows that there exists a maximum of gathered food at a particular value of the dimen-
sionless diffusion constant, § = D,/D. Since D, depends strongly and monotonously on the width
of the exponential TAD, as shown in Egs. (1) and (4), it is clear that there is an optimal width o for
which the food gathered is maximized corresponding to maximal foraging success. Thus our simple
theory of food gathering is consistent with the hypothesis put forth at the beginning of this paper.

6. Random walk simulations

The foregoing simple theory indicates that exponential TADs with characteristic noise widths,
g9, maximize food gathering in a finite sized food patch while feeding for a finite amount of time.
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Fig. 8. Fraction of food gathered cgatnered, Versus the dimensionless diffusion constant J, for three values of the
dimensionless clearance rate k = 1 (solid line), ¥ = 2 (dashed line), k =5 (dotted line). Note the maximum of food
gathered at an optimal value of 6. The gathered food is expressed as a fraction of the total original amount.

We have tested this conclusion also with a numerical simulation. Daphnia do feed for a finite time
(only at night) and we assume that the food patches are finite in size. There is now information on
the measured sizes of such food patches in the range of decimeters [64]. Here we present two sim-
ulations built upon minimal sets of assumptions. Both indeed show a maximum in the food gath-
ered at an optimal value of the TAD width.

6.1. First simulation

In this simulation the food gathered is proportional to total length traversed within the circular
food patch, excluding path recrossing events where the food has already been consumed. The
agent is assumed to eat only during a hop. Pauses and the pause times are ignored. The agent sim-
ply executes the CRW within the continuous space delineated by the circle. In this simulation a
circle of radius R =90 mm is defined as a food patch. The circle is initially filled with 2.5 x 10°
boxes. The food density as represented by the boxes is uniform, and the agent hops always with
the same hop length equal to the measured mean length as quoted in Section 4, (¢) = 1.11 mm.
Thus an agent encounters on average 100 food boxes (prey particles) during one hop. Ten agents
are initially located at random positions within the circle. The system is iterated for a finite num-
ber of times (representing the finite feeding time, 7). Upon each iteration each agent (1) chooses a
turning angle, «, from an exponential distribution of width ¢y; and (2) hops for a fixed and con-
stant length in the direction dictated by «. The numbers of left-hand and right-hand turns are
equal in the mean. During the hop, all boxes that the agent encounters (i.e. that its trajectory over-
laps with) are marked. Outside the circle the agent obtains nothing. It should be noted that an
agent that has exited the patch can (with small probability) actually return to the circle within
which it again collects food if it encounters boxes not previously marked. After the » iterations,
the marked boxes within the circle are summed and expressed as a percentage of the total initial
number of boxes within the circle. This represents the ‘food gathered’ by all agents during the
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finite foraging time. The system is reinitialized and the process repeated until a statistically accu-
rate average value for the food gathered is obtained. This is the output of the simulation: the mean
food gathered in the specified time within the specific sized food patch. The fixed foraging time is
T = nt, where 7 is the total interhop time. This simulation is repeated for various noise widths
spanning the range of distributions from close to a delta function to close to pure Brownian mo-
tion. The results are shown in Fig. 9.

In Fig. 9, the collected material is the food gathered expressed as a fraction of the total initial
food placed in the circle. The simulation shows a maximum in the amount of material gathered at
an optimal value of noise width. In this simulation the values of R and T were chosen to locate the
maximum at approximately oy = 1.0 radian (57.3°). This corresponds to the observed value of the
noise width for D. magna — juveniles (see Table 1).

Alternatively, the simulation can be used to calculate the optimal food patch radius given a
fixed noise width and feeding time. For a single agent started at the center of the patch, and
for T=nt=60s, go=1.20rad (see D. magna — adult, in Table 1) and © = (t,) + (1,) = 0.4 5,
we obtain Ry, = 36 mm.

While the results of this simulation are not unreasonable, one might ask how far the typical
agent diffuses in the fixed feeding time? We can estimate the diffusion distance based purely on
experimentally measured values, for example, for D. magna — adult: the mean hop length,
(¢) = 1.11 mm; hop time, (f,) =0.15s; pause time, (f,) =0.25s, and optimal turning angle
oo = 1.2 rad, as follows. From the theory Eq. (4), the normalized correlation is

1 _ =2
_ L+ exp(=n/ay) 047 (5.1)
1 —exp(—mn/ap) 1 + o,

and the diffusion constant, Eq. (1) is
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Fig. 9. The first simulation. Ten agents were initially located at random positions within a circle of radius
R =90 mm.They forage for food (material) with a sequence of hops of length 1 'mm and hop time 0.4 s for a fixed time
T = 60 s. Turning angles are chosen from exponential distributions of noise widths go. The experimentally measured
range for all species is shown by the vertical bars on the bottom axis. At each gy, 50000 realizations of the population
were executed. The statistical precision is comparable to the size of the symbols, as indicated by the smoothness of the
curve.
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By 1+Q s

D, = e 2.17 mm-~/s, (5.2)
with the interhop time, T = 0.4 s. This diffusion constant is in surprisingly good agreement with
that calculated from theory alone using reasonable assumptions [12]. Thus in a foraging time
of 60s in two dimensions the typical animal would diffuse a distance of Rins-diffusion =
VA4DT =2 22.8 mm. In a total feeding time of 8 h the agent would diffuse about 0.5 m. We note
that Ryms-diffusion < Ropt. and this is to be expected. Recall that R, is the fixed food patch radius
obtained by adjusting the maximum of food gathered to correspond to a particular value of a.
Considering the food missed, with fixed 7" and R, there are two possibilities: First, the agent
may wander outside of the food patch, in which case it obtains nothing. Second, if the agent
crosses its own or another agent’s path inside the food patch, where the food is already eaten,
it obtains nothing in the overlap of the two tracks. Thus the optimal radius marks an equilibrium
of these two cases. Because the loss in the first case is larger than in the second, the diffusion radius
is always smaller than the optimal radius.

6.2. The second simulation

The second simulation may represent a more realistic view of how Daphnia actually feed. In this
simulation the agents do not collect food during a hop, but instead during the pause time. Again
we take a food patch represented by a circle of radius R. The circle is filled with 2.5 x 10° boxes
initially as before. We assume a random walk-type motion consisting of the hop—pause—turn—hop
sequence with fixed hop length /, fixed hop time ¢, and pause time ¢,. The hop length and time are
taken from experimentally obtained average values (see Section 4), (¢) = 1.11 mm; hop time,
(tn) = 0.15 s. The pause times are taken from a distribution with characteristic parameters as mea-
sured by experiment, that is with average (¢,) = 0.25s. The pause times were thus chosen ran-
domly from the pause time distribution: P(z,) = exp[—#/0.25]. The turning angles between hops
are taken from an exponential distribution of width ¢4 as given by Eq. (3). Right and left hand
turns are randomly chosen and on average are equal in number (so that the TAD is symmetric).
Initially, the agent is started from the center of the circle. After every hop, the agent stops (the
pause time) to gather food. Depending on the pause time and the clearance rate k, chosen, a circle
of a certain size is drawn around the x—y position of the pause. All boxes fully or partially within
this circle are removed (the food is eaten and no longer available to that or another agent). As
before an agent may exit the circle where it finds no food and may re enter the circle (with some
probability) and find food again. Sequential values of ¢, are chosen in the range 0.1-10 rad, and
the simulation was run for each value. After a fixed time 7= 120 s (corresponding to 50000 iter-
ations) the number of boxes removed (food eaten) is calculated as a percentage of the initial total
number as before. This constituted one ‘run’ of the simulation. Another agent was then started in
a random initial direction for the second run. This process was repeated for 5000 runs in order to
obtain a statistically precise mean value for the food gathered at every value of ¢o. This sequence
was repeated for three values of the clearance rate k. The results are shown in Fig. 10 where we
again delineate the experimentally observed range (ER).

We are gratified that the main result of both simulations is robust, that is, two quite different
simulations both show the optimal TAD width that maximizes the food gathered, and this is our
main result.
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Fig. 10. The gathered food versus the width of the TAD g, for three clearance rates: k = 32 mm?/s (solid curve),
8 mm?/s (dashed curve), and 2 mm?%/s (dotted curve). These test the sensitivity of the simulation to parameter values.
The statistical precision is comparable to the size of the symbols. Here the gathered food in each case has been
normalized so that its maximum is unity. ER delineates the experimentally observed range.

Three typical trajectories for three values of gy are shown in Fig. 11 for this simulation. One can
clearly see that for o too large (magenta), the agent spends too much time near the origin and too
little exploring the outer regions of the food patch, while for oy too small (blue) the trajectory is
nearly ballistic and again too little food is obtained. The optimal noise width (green) yields the
maximum coverage and hence the maximum food obtained.
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Fig. 11. Sample trajectories showing food consumed during each pause as the size of each circle at every x—y location
during a pause separating two successive hops. The blue trajectory represents nearly ballistic motion for g = 0.1. The
green trajectory is for og = 1.2 and is optimal for this simulation. The magenta trajectory is for 6y = 10.0 and represents
nearly uncorrelated, or pure Brownian, motion. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this paper.)
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7. Speculation, testing and conclusions

Our hypothesis is that the exponential TADs including a specific range of noise widths repre-
sent a foraging characteristic that has evolved in order to enhance survival. The experimental data
together with the theory and the simulations based on minimal assumptions support, though do
not prove, the hypothesis. However, both the theory and the simulations show that an optimal
noise width leads to a maximum of food gathered in a finite feeding time in a finite sized food
patch provided the TAD is an exponential function. In the experiment, we observe that four of
the five species including juveniles of two species of Daphnia do show TADs that are well de-
scribed by exponential functions. We can therefore conclude that the exponential TADs observed
for the animals lead to an optimal foraging behavior in the form of a maximum in the food gath-
ered at an optimal value of noise width of the TAD. Moreover, commencing with experimental
values for the mean hop length, hop and pause times, using our theory and simulations, we obtain
reasonable numbers for the patch size based on typical short or night-long feeding times.

8. Discussion

This work does not, of course, prove the conjecture. In fact, we make the following criticisms of
our work: First, the range of noise widths gy, is rather wide, from 0.52 rad (D. pulex juvenile) to
2.3 rad (D. lumholtzi with spines) as shown in Table 1. This observation argues against our inter-
pretation of the noise width as universally leading to optimal foraging success. On the other hand,
if the two extreme values just mentioned are eliminated, all other values of gy lie in the rather more
narrow range between 0.74 rad (D. pulex adult) and 1.2 rad (D. magna adult). The interpretation —
that maximum foraging success leads to maximum fitness — would strictly point toward a single
(optimal) value of g, for all species, ages and morphological forms. But the detailed complexity
of each individual organism no doubt precludes such universality. A second criticism addresses
the reproducibility of results obtained in the two different labs in St. Louis and Milwaukee. As
stated above, we have two sets of data for D. pulex adult, one obtained in St. Louis and the other
in Milwaukee representing an 11% difference. This difference can be considered to represent the
overall reliability of our results. (One might note, however, that the St. Louis result as shown
in Fig. 6 is one of the very few histograms that show a ‘cross over’ behavior from exponential
to possibly power law behavior. Thus the formal fit to the data over the full range of turning angle
may have been skewed toward a smaller than normal value. Similar cross over, or main discon-
tinuities, were observed in histograms of tumbling angles by Oxyrrhis marina in Ref. [69]). Finally,
it should be noted that our simulations and experiments differ in one important respect: In the
simulations, the agent can leave the food patch and even return to it with some probability. By
contrast, in the experiments the animal always swims in a food patch of uniform and constant
food distribution. The experimental results thus represent a natural behavior of single individuals
while foraging within a food patch of sufficient prey density. We assume that the characteristics of
this motion, for example the noise width, evolved over time and under natural conditions, for
example, within finite sized food patches and during finite feeding times encountered in the wild.

It is important to note that we have not produced a comprehensive theory of motion in this
work. Instead, our message is quite simple: Based on experimental observations, histograms of
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the turning angles of foraging Daphnia are well described by exponential functions of varying
widths. Under the constraint that the agents feed for a fixed time in a food patch of fixed size,
theory and simulation show that the food gathered is maximized at an optimal value of the
width of the TAD. The influences of gravity and fluid drag on feeding [65,66] are not considered
here.

Exponential distributions are not common in physics but have recently begun to attract atten-
tion in biology, for example in descriptions of the swimming velocities of diverse types of motile
cells [67]. Quoting these authors [67] “. . .in spite of the complex cellular processes, the motion of a
cell can be well described by a simple universal distribution function.” Distributions of the rate of
turning angles have recently been reported, and the distributions of path curvature for the plank-
tonic organism, O. marina, both with and without the presence of prey, appear to be describable
by exponentials [68]. Using the same organism, Bartumeus et al. [69] assembled histograms of
tumbling angles and studied the searching statistics of these animals under the influence of varying
density of prey. They found evidence of exponential flight time distributions when prey are plen-
tiful, switching over to a power law (possibly Lévy) statistics when prey become scarce. Moreover,
one previous measurement of the TAD for a marine planktonic organism, Temora longicornis has
been reported [32]. Mean turning angles [17,18,34-36,38] and turning angle distributions
[29,37,43-45,69] for a variety of animals and theoretical models have been reported previously.
The use of mean turning angles specifically in search strategies have been reported for copepod
foraging using a special simulator [17], clown fish larvae [18], the painted turtle [35] and in general
motion problems for the fruit fly [34] and cultured trout fish [36]. The mean turning angle also
arises in theoretical analyses of biased CRWs [38]. For biased CRWs, the TAD cannot be sym-
metrical as in Fig. 5 here, since in these cases the animal is turning in response to some stimulus.
Thus the mean turning angle becomes time dependent. Turning angle distributions were reported
in the following cases: A general model for animal motion in a bounded space also results in
asymmetric TADs generated as the animal turns to avoid the boundaries [29]. Asymmetric TADs
must also be integrated in models applied to motions of desert arthropods [37]. Foraging bumble-
bees also show TADs specifically when their habitat is heterogeneous on scales smaller than the
mean range [43]. Finally, two theoretical models make use of TADs, one an involving chaos and
fractal motions in a fish school [44]; and the other a general model of animal motion using per-
sistent, or biased, CRWs [45]. Interestingly, correlations using TADs between the turning angles
and other motionally relevant quantities were studied [39]. TADs are crucial in the analysis of ani-
mals displaying non-Brownian motions, for example Lévy statistics [69]. Of these studies, three
[17,29,35] specifically address the problem of animal motions in bounded spaces as we do here.
None, however, apply both constraints: bounded space and fixed time to the motion as we do
here. None have found an optimum search strategy mediated by noise as we do here. In contrast
to swarming behavior [70], which may be a predator avoidance strategy [71], all of the previously
cited works, and the present study, apply to individual motions (as contrasted with collective mo-
tions) in response to single stimuli insofar as possible.

Regarding search strategies, a strong influence seems to be the ‘patchiness’ or heterogeneity of
the prey distribution [23]. Generally, search strategies that call upon Lévy statistics are more effi-
cient than purely Brownian statistics when the prey distribution is highly heterogeneous [1,2,69].
By contrast here we study only uniform prey distributions of high concentration but with foraging
limited by two aforementioned constraints in the theory and simulations.
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Fig. 9, which shows maximum foraging success at an optimal noise width, gy, is reminiscent
of stochastic resonance (SR) [72]. The defining signature of SR is that some useful quantity, for
example, information about the approach of predators [73,74] or the presence of prey [75] is
optimized by noise. The noise can be either provided by external or endogenous sources. Since
noise has always been present, it is, of course, an attractive idea that noise, whether endogenous
or environmental, in some way mediated or partially mediated the evolution of many sensory
and functional modalities that we see in nature today, and that internal random appearing pro-
cesses, like the observed TADs, may have arisen in response to selective pressures. The obvious
difficulty to test this supposition is that it is impossible to change the evolved characteristic (in
this case, the noise width) in a controlled manner in an experimental animal in the lab. (In the
case of Daphnia it is possible to change this width in the lab by applying another stimulus, for
example light. But in that case we would not be observing natural foraging behavior alone un-
der the influence of uniform food density in the dark as occurs in nature.) Indeed, nearly all
laboratory stochastic resonance experiments to date, both in physics and biology, have been
performed with external noise intensity as a variable under the control of the experimenter.
(Exceptions are two experiments in medical science wherein an internal neural noise was con-
trolled by muscle tension [76,77]). One experiment, similar in spirit to the present one, found
that a characteristic internal noise intensity closely matched measured optimal values obtained
in a controlled experiment, thus admitting an interpretation based on natural selection [78].
Much has been written about SR, and here we cite the progress report [72] and the reviews
(in chronological order) [79-82].

Our approach has consequently been to obtain measurements of the hypothetically evolved
quantity (in this case the TADs and their widths) across species representing differing sizes
and swimming characteristics. The idea being that if the quantity has indeed arisen because
of natural selection in order to maximize success at a common task (in this case, foraging
for food) then it may have appeared across species and be similar for differing species. Here
we have shown that exponential TADs are observed for four species including two morpholog-
ical forms of one and for both adults and juveniles of two other species. Moreover, we have
shown that the characteristic noise widths of all these TADs lie in a quite reasonable though
rather wide range that our simulation shows to be near optimal. Though our results are sugges-
tive, we cannot unequivocally say that our Daphnia demonstrate a naturally evolved example of
SR. However, the theory and simulations presented above, specifically the results shown in Figs.
8-10, point toward this suggestion and thus demonstrate a new kind of SR that we call, natural
stochastic resonance.
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